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Abstract

Hybridizationamong populationard species is a central thememany areas dbiology,

and the studyf hybridizationhas directapplicability to testing hypotheses about
evolution, speciation, and genetic recombination, as well as having conservation, legal
and regulatory implications. Yet, despite being a topic of considerabtesttthe
identifieationof hybrid individuals, and quantification tife (un)certainty surrounding

the identifiecations remains difficultUnlike other programs that exist to identify hybrids
based/on genotypic information, NEWHYBRIIsSable toassign individuals tspecific
hybrid classes (e.g.1FF,) because it makes useptternsof gene inheritance within

each locus rather than just fwportions of gene inheritance within each individual. For
each comparison and set of markemsltiple independent runs of each dataset should be
used to develop an estimate of tiybrid class assignment accuracie necessity of
analyzing multiple simulated datasetsnstructed frontarge genomavide datasets
presents.significant computational challenges. To address these challenges we present
parallelnewhybrid, anR packagealesigned talecreaseiser burdemvhenundertaking
multiple NEWHYBRIDS analysesparallelnewhybrid does so by taking advantage of the
parallel.eemputational capabilities inherent in modern computers tceetficiand
automatically executseparatdNEWHYBRIDS runs in paralleWe show that
parallelization of analyses using this package affords users séldreg¢ductons in time
over a traditional serial analysysarallelnewhybrid consists obn example dataset, a
README andthree operating systegpecific functions to execute parallel
NEWHYBRIDS analyses on each of a computertores parallelnewhybrid is freely
available on the longerm software hosting site GitHub

(www.github.com/bwringe/parallelnewhybrid).

Introduction

Hybridization amongclosely related specigandgenetically distinct populations of the
same specigss a topic ofbroadinterest to many fields of biolog§Abbott et al. 2013;
Todescoet al. 2016; Warschefskyt al. 2014). Natural hybrid zones, areas which
genetically distinct populations come into contact, and interbreed, are widely known and

studied, especially in terms bybridization’simpact on speciation and evolutiBarton
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& Hewitt 1985; Bensoret al. 2014; Hilbishet al. 2012) Hybridization can slow or
reverse speation by allowinggene flow and recombinatipbut it can also increase the
rate at which speciation occurs through adaptive introgressishcan even lead to the
near instantaneous creationnaivel species via allopolyploidizatig(Abbott et al. 2013)
but segBarton 2013)) The study of hybridization can also have conservategaland
policy implications as it relates to the genetic structure iatefrity of populations
(Bensoretal: 2014, Fitzpatricket al. 2015) or introgression of domesticat@didd et al.
2009)or transgeni¢Warwick et al. 2003)alleles into wild populations. However, despite
the importance of understanding the dynamics of hybridization, the identification of
hybridssthemselves can be difficult, aasicertainingo which hybrid class (e.g.1FF,
backcross)amdividual belongss more so.

Intuitively and of salience, the ease and precision with which hybridized
individuals_can be identifiedsing genetic methods inversely related to the degrete
(genetic) relatednedsetweenthe groups which are (suspedtef) hybridizing (Vaha &
Primmery2006) However,in many caseshe degree of genetic differentiation among
groups“(ewg. within or among species) may be, lbmiting the ability to evaluate
hybridization and introgressionithin and amongspecies.The identification of hybrids
andtheability to determne thepresencetypes,and numbers of individuals of different
hybrid classesan provide crucial information on tipeesencemagnitudeand time scale
over which introgression is occurring/hile sveralstatistical approachdseviewed by
(Anderson=2009; Payseur & Rieseberg 2D1&)d softvare programmeexist [e.g.
STRUCTURE, (Hubisz et al. 2009) NEWHYBRIDS (Anderson & Thompson 2002)
BAYESASS (Wilson & Rannala 2003)GENODIVE (Meirmans & Van Tienderen
2004) .which uses the maximum likelihood method of (Buerkle 20@8)identify
hybrids,most do not assigio hybrid class, thus losing potentially importamfiormation
NEWHYBRIDS (Anderson & Thompson 2002) unique in this respect,in the
discreteness ahdividual assignment tepecifichybrid classsit provides This is done
through*evaluation ofhe Bayesian posterigorobability of membership irachof six
genotypefrequency classes$.¢. purepopulationl, purepopulation2, F, F,, backcross
to populationl, backcross topopulation 2(Anderson & Thompson 200R)for each
individual, computed using Markov chain Monte CafMCMC; Anderson & Thompson
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2002).In addition,NEWHYBRIDS does not require that the allele frequencies of the two
populations be knowa priori, and as suchpure samples of the two populations need
not be available to identify hybrids. This is advantagdousdentifying escapes from
domesticated popuians without prampact baseline samples from the wild
populatiens, om situationswhere the domesticateshimalsare derived from a local wild
population However, (as with most methods)he accuracy of NEWHYBRIDS to
correctly“differentiatehybrid classis highly dependent upon the numbafinformative
markers“provided and the genetic distinctness of the two populations irestjon
(Anderson & Thompson 2002; Vaha & Primmer 2006bnsequentlywhile the large
genomewide data sets prodad by nexgeneration sequencing and genotyping methods
may offer significantopportunitiesfor improvedhybrid class identificationat the same
time their size and complexity presechallenges for existing softwarbltimately, for
each comparison angkt of markers, the accurasiiould be tested using the resufs
multiple._simulated datasetend multipleindependentuns of each dataset to ensure
convergenc€Anderson 2003jurther increasing the computatadremands.

Currently, the speedt which a completeNEWHYBRIDS analysis can be
completedis limited bythe fact that each analysisust be initiated separately and in
sequence by the usefAnderson 2003; Anderson & Thompson 200ZFince
NEWHYBRIDS was publishegAnderson & Thompson 200Xharedmemory multiple
computer processing unit (CPU/core) chipsets have supplanted single CPU chips, and ar
presentrinmost consumer computers$f properly leveraged, this muktore architecture
can allow=for more timefficient computing by distributing tasks among cores, and
allowing for parallel processinge.g. Besnier & Glover 2013When compared against
running analyses in series, the benefits of such a parallel approach would be prajportio
to the size offte dataset, and thus be a boon for the analysis/daegafnext generation
sequencing/dasetswhich themselves offesignificant advances in hybridentification
and classification.

Itshas been previously shown that scripting not ailgws tasksto be reliably
distributed across the available cores, but can also immediately assigrabrieva free
core as soon as a cdnas finished a procegBesnier & Glover 2013)Although such
scripting is invariably more efficient, specialized knowledge of the computer file
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structureand requisite programming languages required Here we describe an R
Development Core Team 2015)ackage that takes advantage of the parallel
computational capabilities inherent in modern computeesficiently andautomatically
analyze lists oONEWHYBRIDS runs in parallelWe emphasizehat we are not mukHi
threading.the NEWHYBRIDS prograto takeadvantage of multiple processors during a
single run any single run wilktill take just asong, butwe are automating the procedure
for performing multiple runs of the software in paralléhe R computing language
already features many packages deaditdo the analysis and presentation of population
genetics datée.g. Goudet 2005; Jombart & Ahmed 2011; Paradis 20Hi)s, although

the Rlanguage is likely to be familiar to many current and potential users of
NEWHYBRIDS, our package is designed such that it should be readily usable by R

novices.

Materials and Methods

Description of the package

ThoughNEWHYBRIDS does not natively support multi-threading, it is possible to run
independenNEWHYBRIDS analyses in parallel acroal available cores. Thisrocess
can, however, be tedious because NEWHYBRIDS does not have an option to change the
name orflocation of the output files. Accordingly, to NBWHYBRIDS in parallel, the
user musperform each run in a separate directory so that the output ofsiaade of
NEWHYBRIDS is not overwritten by the output of another instance. Doing this nianual
requires thathe user open separa@mmandine terminals (e.g. Microsotommand

line, OS X Terminal) and exeNEWHYBRIDS with a specific set of parameters for
each analysis folder. The status of el WHYBRIDS run must be individually
monitored by the user, and when each analysis is completed, all thefdespygenerated

by NEWHYBRIDS must be renamed, and combined for post-procesSuhmanual
monitoring and (re)implementation invariably crea@PU downtime and thus

inefficiency because it is difficufor the user to monitor the NEWHYBRIDSogress

due to the extended duration of the analysis (many hours and potentially days).
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123 Furthermore, manually copying, moving and renaming files introduces the potential for
124 human error.

125 Our package, parallelnewhybrid, is designed to address these issuigs:
126 implemens the parallelization of multiple NEWHYBRIDS analyses and also
127  automatically compiles and renames the outputs of NEWHYBRIDfflect the file

128 names of the datasdtsat were provided to.iDifferences in computer operating system
129  architecturemean that the manner in which tasks are distributed in Windows diifens f
130 OS XTand“LINUX Consequentlyjn addition to an example dataset, the package
131 parallenewhybrid is comprised of three operating systerspecific functions to

132 implementsthe parallelization ®EWHYBRIDS: parallelnh_WIN, parallelnh_OSX, and

133 parallenh_EINUX. A further consequence of the manner in which parallelization is
134 effected by)R in Windows is that moparallelization pckages,parallelnewhybrid

135 included, donot function correctly in graphic user interface (GUI) or embedded
136  environmeniR sessions. While we have been successful in utilizangllelnh_xx in the

137 R GUIprogramme RStudio(RStudio Team 2015nd RConsole(R Development Core
138 Team 2015)n both OS X (OS X Version 10.11.3, MacBook P28 GHz Intel Core i/
139 16 GB*RAM) and LINUX (Ubuntu Version 14.04, Dell Precision Tower 712§ 2.3

140 GHz_ Intel Xeon 32 GB RAM), we have found running through the termitaloffer

141  better stability. As such, we highly recommend tbaatallelnh_xx be run in the terminal
142 by default.Ilt may also be necessary to run R as root or administrator when invoking
143 parallednh™x because some antirus programmes and tools may prevent the
144  manipulation of the NEWHYBRIDS executable file.

145 Example dataset

146

147  SmPops.NH:txt, is a simulated dataset wigenotypes at 240 loci f&00 individuals in
148 each of.the sigenotype frequency cless(i.e. purel, pure2, F1, F2, BC1 and BC2,;
149 Andersoen & Thompson 2002)and is intended to beanalyzed in parallel using
150 paralleinhaxx. The instructions for the user on how to ctipy file from the Repository
151 to another foldeonthe user’s hard drivand to prepare the file for parallel analysis, are
152  detailed in the README (https://github.com/bwringe/parallelnewhybrid).

153  Quantification of improvement in performance
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We compared the time required to analyze three independently simulated datasets, each
replicated three times using parallelnh xx versus a singkthreaded (serial)
implementationin all casesNEWHYBRIDS was run with an with an initial busim of

500 replicates, followed by 1000 sweeps (MCMC terminology of Anderson & Thompson
2002).While these numbers are lower thawould be typically used in a reahalysis,
since timeto completion scales linearly with the number of iterations (i.e. sum of burnin
and sweepskhe observed fold change improvements should be invariant to number of
iterations.To implement the serial analysis, we restricted the ntinfg@ading ability of
parallelphaxx such that it was limited toteratively populahg a single core.We
acknowledge that this likely an oveestimate of the single core speed, as the script will
invariably ke faster than a human operator in initiating a new run as each finlbes.
chose to analyz& files on CPU architectures thi 8 virtual (4 physical) corg$ntel Core

17, Samsing and MacBook Pro), while the case of the Intel Xeamhich has 24 virtual

(12 physieal) coresscripting limited executionot a maximum of 8 cores. We also
examined+how the time to complete the 8 analyses scaled with the number of (virtual)
coresavailable (1 to 8)to illustrate howdifferences in operating system and chip
architecture influence the operationair parallelization functianThis also allowed us

to observe operation under the least computationally effisegttario: that is wherthe
nunber. of files to be analyzed is notaultiple of he number of (virtual) core$hus in
casesnvheren = ¢ (modr) | r # 0, where n is the number of files to be analyzed anid

the number of cores availablle function muscompleten-c* + 1 runs in parallel with

jobs allocated to all cores, plus a single run in wiielr cores are idle.

Results and Discussion

Not surprisingly, even when thitiation of new runs was automated, the time to
complete the analysis of the nine files (three simulated datasets, each run in triplicate)
was much slowewithout parallelization(Table 1) However, the relationship between
improvement in computational speed, and the number of cores matibl@vaias not

linear (Table2). This demonstrates th#te dility to automatically distribute a list of

This article is protected by copyright. All rights reserved



184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

analyses across multiple CPUbffers quantitative improvements over the native
command line implementation ®AEWHYBRIDS. While always quicker than running
analyses sequentially,effound that the computational time did not decrease linearly with
the number_of cores implemented in the analy$éss relationship was seen in each
operating.systerti.e. Windows, OS X, LINUX), and on the different CPU architectures
(Intel Cored7,Intel Xeon), and has been reported elsewh@&enier & Glover 2013)
Like”Besnerand Glover (2013), we suggest this +ioearity was not caused by
paralleinh™xx, but insteads a function of how the operating system and processor deals
with the distribution and execution of computationally intensive processes (i.e.
NEWHYBRIDS) along with (operating system specific) underlying system processes.
Furtherymonitoring of system resources during eachl indicated thaperformancevas

not limited by the availability of random access mem@yAM), as additional RAM was
always availale during each simulation.

We acknowledge that functionality analogous to that offered by
parallelmewhybrid could be achieved using scripting languages (e.g. bash scrip for Unix
like systems, shell script for Windows). However, ef@se to use the R pm@gnming
languagebecause we feel iffers several benefitthat can help make the functionality
offered-byparallelnewhybrid accessible to, and utilized by more people. These include
an existing population genetic user base which may afford most poteséed with
greaterfamiliarity and comfort with R thamwith scripting languagesas well as the
infrastructure present within thBR community for the archival and distribution of
packages

In summary, we have developed an R package that pravaigsstantiatiecreas
in the, time, required to validate and conduct hybrid detection by enabling the
parallelzation of analyses usinQlEWHYBRIDS. Furthermore, because the time to
complete _analyses scales with the size of the dataset provided (number ahdoci
individuals) and because running in parallel was always faster than in series, this package
will enable.the exploration of hybrid class assignment power and the utitizattiarger
datasets than previously feasible with NEWHYBRIDS. This shalilv researchers
conducting hybrid detection to generate more accysagteriorprobability thresholds
for identifying individual hybrid categories by examining the accuracy with which
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NEWHYBRIDS correctly identifies the hybrid class of known individualsdplicated
analyses of multiple simulated datasétarthermore, constructing and testing multiple
simulated datasets is especially important wéig@mpting to eliminate higgrading bias
through the use of simulation and training datasets (Anderson 2010) samgte sizes
are small.and thus gene frequencies more prone to saAplingedalteration and when
the genetic differentiation between populations is IgMaha & Primmer 2006)
Conversely,parallelnewhybrid will also allow for larger datasets, both numbers of
individuals®and numbers of loci per individu#d, be tested than are currentgasible
which imayincrease the abilityor identification of hybridization at fingcale levels of
genetic.differentiation.
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Table 1. Comparison of the computational times required to complete the analysis of
the nine files (three simulated datasets, each run in triplicsite NEWHYBRIDS in

series compared to in parallel uspayallelnewhybrid using different operating systems

and CPU architectures.

Computer Time to Time to Fold
complete in complete in improvement
series (min) parallel (min)

MacBook Pre" 41.60 10.13 4.10

Samsung'Windows 10° 72.50 22.47 3.21

Dell Precision Tower Ubuntu® | 73.36 9.93 7.62

"MacB66k Pro, OS X 10.11, 2.3 GHz Intel Céfavith 16 GB RAM
’Samsting;"Windows 10, 2.3 GHz Intel Core i7 with 12 GB RAM

3Dell Precision Tower 7190, Ubuntu Version 14.04, 2X 2.3 GHz Intel Xaettn32 GB

RAM
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318 Table2 Computationatime required to analyzes8mulated datasets each witB00 individuals genotyped at 240 lo€he analysis was repeated
319 usingdifferentoperating system and CRiuchitecturesCPU cores refers tthe number o€ores thathe analysigouldaccess
320 simultaneously (i.e. number of parallel executions of NEWHYBRIDS). Fold imprexeis calculated relative to the time taken to

321 conduct themanalysis using a single core, which itself is analogous to running thesanalgses.

MacBook Pro® Samsung Windows 10° Dell Precision Tower Ubuntu®
CPU Cores Elapsed Fold Elapsed Time Fold Elapsed Time Fold
Time (min) Improvement (min) Improvement (min) Improvement
1 41.61 NA 72.20 NA 73.31 NA
2 20.56 2.02 36.84 1.96 38.12 2.00
3 15.39 2.72 32.32 2.23 30.91 2.47
4 11.90 3.50 30.65 2.35 19.03 4.02
5 12.49 3.33 32.22 2.24 19.30 3.95
6 12.87 3.23 28.56 2.52 18.82 4.05
7 13.75 3.03 29.72 2.43 18.43 4.14
8 10.13 4.10 22.47 3.21 9.95 7.67

322 'MacBook Pro, OS X 10.11, 2.3 GHz Intébre i7with 16 GB RAM
323 2Samsung,Windows 10, 2.3 GHz Intel Core i7 withGRRAM
324 3Dell Preeision Tower 7190, Ubuntu Version 14.04, 2X 2.3 GHz Intel X@tn32 GB RAM
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