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Abstract 1 

Hybridization among populations and species is a central theme in many areas of biology, 2 

and the study of hybridization has direct applicability to testing hypotheses about 3 

evolution, speciation, and genetic recombination, as well as having conservation, legal 4 

and regulatory implications. Yet, despite being a topic of considerable interest, the 5 

identification of hybrid individuals, and quantification of the (un)certainty surrounding 6 

the identifications remains difficult. Unlike other programs that exist to identify hybrids 7 

based on genotypic information, NEWHYBRIDS is able to assign individuals to specific 8 

hybrid classes (e.g. F1, F2

Introduction 25 

) because it makes use of patterns of gene inheritance within 9 

each locus, rather than just the proportions of gene inheritance within each individual. For 10 

each comparison and set of markers, multiple independent runs of each dataset should be 11 

used to develop an estimate of the hybrid class assignment accuracy. The necessity of 12 

analyzing multiple simulated datasets, constructed from large genome-wide datasets 13 

presents significant computational challenges. To address these challenges we present 14 

parallelnewhybrid, an R package designed to decrease user burden when undertaking 15 

multiple NEWHYBRIDS analyses. parallelnewhybrid does so by taking advantage of the 16 

parallel computational capabilities inherent in modern computers to efficiently and 17 

automatically execute separate NEWHYBRIDS runs in parallel. We show that 18 

parallelization of analyses using this package affords users several-fold reductions in time 19 

over a traditional serial analysis. parallelnewhybrid consists of an example dataset, a 20 

README and three operating system-specific functions to execute parallel 21 

NEWHYBRIDS analyses on each of a computer’s c cores. parallelnewhybrid is freely 22 

available on the long-term software hosting site GitHub 23 

(www.github.com/bwringe/parallelnewhybrid).  24 

Hybridization among closely related species, and genetically distinct populations of the 26 

same species, is a topic of broad interest to many fields of biology (Abbott et al. 2013; 27 

Todesco et al. 2016; Warschefsky et al. 2014). Natural hybrid zones, areas in which 28 

genetically distinct populations come into contact, and interbreed, are widely known and 29 

studied, especially in terms of hybridization’s impact on speciation and evolution (Barton 30 
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& Hewitt 1985; Benson et al. 2014; Hilbish et al. 2012). Hybridization can slow or 31 

reverse speciation by allowing gene flow and recombination, but it can also increase the 32 

rate at which speciation occurs through adaptive introgression, and can even lead to the 33 

near instantaneous creation of novel species via allopolyploidization [(Abbott et al. 2013) 34 

but see (Barton 2013)]. The study of hybridization can also have conservation, legal and 35 

policy implications as it relates to the genetic structure and integrity of populations 36 

(Benson et al. 2014; Fitzpatrick et al. 2015), or introgression of domesticated (Kidd et al. 37 

2009) or transgenic (Warwick et al. 2003) alleles into wild populations. However, despite 38 

the importance of understanding the dynamics of hybridization, the identification of 39 

hybrids themselves can be difficult, and ascertaining to which hybrid class (e.g. F1, F2

 Intuitively and of salience, the ease and precision with which hybridized 42 

individuals can be identified using genetic methods is inversely related to the degree of 43 

(genetic) relatedness between the groups which are (suspected of) hybridizing (Vaha & 44 

Primmer 2006). However, in many cases the degree of genetic differentiation among 45 

groups (e.g. within or among species) may be low, limiting the ability to evaluate 46 

hybridization and introgression within and among species. The identification of hybrids 47 

and the ability to determine the presence, types, and numbers of individuals of different 48 

hybrid classes can provide crucial information on the presence, magnitude, and time scale 49 

over which introgression is occurring. While several statistical approaches [reviewed by 50 

(Anderson 2009; Payseur & Rieseberg 2016)] and software programmes exist [e.g. 51 

STRUCTURE, (Hubisz et al. 2009); NEWHYBRIDS (Anderson & Thompson 2002); 52 

BAYESASS (Wilson & Rannala 2003); GENODIVE (Meirmans & Van Tienderen 53 

2004), which uses the maximum likelihood method of (Buerkle 2005)] to identify 54 

hybrids, most do not assign to hybrid class, thus losing potentially important information. 55 

NEWHYBRIDS (Anderson & Thompson 2002) is unique in this respect, in the 56 

discreteness of individual assignment to specific hybrid classes it provides. This is done 57 

through evaluation of the Bayesian posterior probability of membership in each of six 58 

genotype frequency classes [i.e. pure population 1, pure population 2, F

, 40 

backcross) an individual belongs is more so. 41 

1, F2, back-cross 59 

to population 1, back-cross to population 2 (Anderson & Thompson 2002)], for each 60 

individual, computed using Markov chain Monte Carlo (MCMC; Anderson & Thompson 61 
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2002). In addition, NEWHYBRIDS does not require that the allele frequencies of the two 62 

populations be known a priori, and, as such, pure samples of the two populations need 63 

not be available to identify hybrids. This is advantageous for identifying escapees from 64 

domesticated populations without pre-impact, baseline samples from the wild 65 

populations, or in situations where the domesticated animals are derived from a local wild 66 

population. However, (as with most methods) the accuracy of NEWHYBRIDS to 67 

correctly differentiate hybrid class is highly dependent upon the number of informative 68 

markers provided, and the genetic distinctness of the two populations in question 69 

(Anderson & Thompson 2002; Vaha & Primmer 2006). Consequently, while the large 70 

genome-wide data sets produced by next-generation sequencing and genotyping methods 71 

may offer significant opportunities for improved hybrid class identification, at the same 72 

time their size and complexity present challenges for existing software. Ultimately, for 73 

each comparison and set of markers, the accuracy should be tested using the results of 74 

multiple simulated datasets, and multiple independent runs of each dataset to ensure 75 

convergence (Anderson 2003) further increasing the computational demands.  76 

Currently, the speed at which a complete NEWHYBRIDS analysis can be 77 

completed is limited by the fact that each analysis must be initiated separately and in 78 

sequence by the user (Anderson 2003; Anderson & Thompson 2002). Since 79 

NEWHYBRIDS was published (Anderson & Thompson 2002), shared-memory multiple-80 

computer processing unit (CPU/core) chipsets have supplanted single CPU chips, and are 81 

present in most consumer computers. If properly leveraged, this multi-core architecture 82 

can allow for more time-efficient computing by distributing tasks among cores, and 83 

allowing for parallel processing (e.g. Besnier & Glover 2013). When compared against 84 

running analyses in series, the benefits of such a parallel approach would be proportional 85 

to the size of the dataset, and thus be a boon for the analysis/use of large, next generation 86 

sequencing datasets which themselves offer significant advances in hybrid identification 87 

and classification.  88 

It has been previously shown that scripting not only allows tasks to be reliably 89 

distributed across the available cores, but can also immediately assign a new job to a free 90 

core as soon as a core has finished a process (Besnier & Glover 2013). Although such 91 

scripting is invariably more efficient, specialized knowledge of the computer file 92 
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structure and requisite programming language is required. Here we describe an R (R 93 

Development Core Team 2015) package that takes advantage of the parallel 94 

computational capabilities inherent in modern computers to efficiently and automatically 95 

analyze lists of NEWHYBRIDS runs in parallel. We emphasize that we are not multi-96 

threading the NEWHYBRIDS program to take advantage of multiple processors during a 97 

single run; any single run will still take just as long, but we are automating the procedure 98 

for performing multiple runs of the software in parallel. The R computing language 99 

already features many packages dedicated to the analysis and presentation of population 100 

genetics data (e.g. Goudet 2005; Jombart & Ahmed 2011; Paradis 2010). Thus, although 101 

the R language is likely to be familiar to many current and potential users of 102 

NEWHYBRIDS, our package is designed such that it should be readily usable by R 103 

novices.  104 

Materials and Methods 105 

 106 

Description of the package 107 

 108 

Though NEWHYBRIDS does not natively support multi-threading, it is possible to run 109 

independent NEWHYBRIDS analyses in parallel across all available cores. This process 110 

can, however, be tedious because NEWHYBRIDS does not have an option to change the 111 

name or location of the output files. Accordingly, to run NEWHYBRIDS in parallel, the 112 

user must perform each run in a separate directory so that the output of one instance of 113 

NEWHYBRIDS is not overwritten by the output of another instance. Doing this manually 114 

requires that the user open separate command-line terminals (e.g. Microsoft command-115 

line, OS X Terminal) and execute NEWHYBRIDS with a specific set of parameters for 116 

each analysis folder. The status of each NEWHYBRIDS run must be individually 117 

monitored by the user, and when each analysis is completed, all the output files generated 118 

by NEWHYBRIDS must be renamed, and combined for post-processing. Such manual 119 

monitoring and (re)implementation invariably creates CPU downtime and thus 120 

inefficiency because it is difficult for the user to monitor the NEWHYBRIDS progress 121 

due to the extended duration of the analysis (many hours and potentially days). 122 
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Furthermore, manually copying, moving and renaming files introduces the potential for 123 

human error.  124 

Our package, parallelnewhybrid, is designed to address these issues: it 125 

implements the parallelization of multiple NEWHYBRIDS analyses, and also 126 

automatically compiles and renames the outputs of NEWHYBRIDS to reflect the file 127 

names of the datasets that were provided to it. Differences in computer operating system 128 

architecture mean that the manner in which tasks are distributed in Windows differs from 129 

OS X and LINUX. Consequently, in addition to an example dataset, the package 130 

parallelnewhybrid is comprised of three operating system-specific functions to 131 

implement the parallelization of NEWHYBRIDS: parallelnh_WIN, parallelnh_OSX, and 132 

parallelnh_LINUX. A further consequence of the manner in which parallelization is 133 

effected by R in Windows is that most parallelization packages, parallelnewhybrid 134 

included, do not function correctly in graphic user interface (GUI) or embedded 135 

environment R sessions. While we have been successful in utilizing parallelnh_xx in the 136 

R GUI programmes RStudio (RStudio Team 2015) and R Console (R Development Core 137 

Team 2015) in both OS X (OS X Version 10.11.3, MacBook Pro, 2.3 GHz Intel Core i7, 138 

16 GB RAM) and LINUX (Ubuntu Version 14.04, Dell Precision Tower 7190, 2X 2.3 139 

GHz Intel Xeon, 32 GB RAM), we have found running through the terminal to offer 140 

better stability. As such, we highly recommend that parallelnh_xx be run in the terminal 141 

by default. It may also be necessary to run R as root or administrator when invoking 142 

parallelnh_xx because some anti-virus programmes and tools may prevent the 143 

manipulation of the NEWHYBRIDS executable file. 144 

Example dataset 145 

 146 

SimPops_NH.txt, is a simulated dataset with genotypes at 240 loci for 200 individuals in 147 

each of the six genotype frequency classes (i.e. pure1, pure2, F1, F2, BC1 and BC2; 148 

Anderson & Thompson 2002), and is intended to be analyzed in parallel using 149 

parallelnh_xx. The instructions for the user on how to copy the file from the R repository 150 

to another folder on the user’s hard drive and to prepare the file for parallel analysis, are 151 

detailed in the README (https://github.com/bwringe/parallelnewhybrid).  152 

Quantification of improvement in performance 153 
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 154 

We compared the time required to analyze three independently simulated datasets, each 155 

replicated three times using parallelnh_xx versus a single-threaded (serial) 156 

implementation. In all cases, NEWHYBRIDS was run with an with an initial burn-in of 157 

500 replicates, followed by 1000 sweeps (MCMC terminology of Anderson & Thompson 158 

2002). While these numbers are lower than would be typically used in a real analysis, 159 

since time to completion scales linearly with the number of iterations (i.e. sum of burnin 160 

and sweeps), the observed fold change improvements should be invariant to number of 161 

iterations. To implement the serial analysis, we restricted the multi-threading ability of 162 

parallelnh_xx such that it was limited to iteratively populating a single core. We 163 

acknowledge that this is likely an overestimate of the single core speed, as the script will 164 

invariably be faster than a human operator in initiating a new run as each finishes. We 165 

chose to analyze 8 files on CPU architectures with 8 virtual (4 physical) cores (Intel Core 166 

i7; Samsung and MacBook Pro), while in the case of the Intel Xeon which has 24 virtual 167 

(12 physical) cores, scripting limited execution to a maximum of 8 cores. We also 168 

examined how the time to complete the 8 analyses scaled with the number of (virtual) 169 

cores available (1 to 8) to illustrate how differences in operating system and chip 170 

architecture influence the operation of our parallelization function. This also allowed us 171 

to observe operation under the least computationally efficient scenario: that is where the 172 

number of files to be analyzed is not a multiple of the number of (virtual) cores. Thus in 173 

cases where n ≡ c (mod r) | r ≠ 0, where n is the number of files to be analyzed and c is 174 

the number of cores available, the function must complete n·c-1

Results and Discussion 177 

 + 1 runs in parallel with 175 

jobs allocated to all cores, plus a single run in which c – r cores are idle.  176 

 178 

Not surprisingly, even when the initiation of new runs was automated, the time to 179 

complete the analysis of the nine files (three simulated datasets, each run in triplicate) 180 

was much slower without parallelization (Table 1). However, the relationship between 181 

improvement in computational speed, and the number of cores made available was not 182 

linear (Table 2). This demonstrates that the ability to automatically distribute a list of 183 
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analyses across multiple CPUs offers quantitative improvements over the native 184 

command line implementation of NEWHYBRIDS. While always quicker than running 185 

analyses sequentially, we found that the computational time did not decrease linearly with 186 

the number of cores implemented in the analyses. This relationship was seen in each 187 

operating system (i.e. Windows, OS X, LINUX), and on the different CPU architectures 188 

(Intel Core i7, Intel Xeon), and has been reported elsewhere (Besnier & Glover 2013). 189 

Like Besnierand Glover (2013), we suggest this non-linearity was not caused by 190 

parallelnh_xx, but instead is a function of how the operating system and processor deals 191 

with the distribution and execution of computationally intensive processes (i.e. 192 

NEWHYBRIDS) along with (operating system specific) underlying system processes. 193 

Further, monitoring of system resources during each trial indicated that performance was 194 

not limited by the availability of random access memory (RAM), as additional RAM was 195 

always available during each simulation.  196 

 We acknowledge that functionality analogous to that offered by 197 

parallelnewhybrid could be achieved using scripting languages (e.g. bash scrip for Unix-198 

like systems, shell script for Windows). However, we chose to use the R programming 199 

language because we feel it offers several benefits that can help make the functionality 200 

offered by parallelnewhybrid accessible to, and utilized by more people. These include 201 

an existing population genetic user base which may afford most potential users with 202 

greater familiarity and comfort with R than with scripting languages, as well as the 203 

infrastructure present within the R community for the archival and distribution of 204 

packages.  205 

In summary, we have developed an R package that provides a substantial decrease 206 

in the time required to validate and conduct hybrid detection by enabling the 207 

parallelization of analyses using NEWHYBRIDS. Furthermore, because the time to 208 

complete analyses scales with the size of the dataset provided (number of loci and 209 

individuals) and because running in parallel was always faster than in series, this package 210 

will enable the exploration of hybrid class assignment power and the utilization of larger 211 

datasets than previously feasible with NEWHYBRIDS. This should allow researchers 212 

conducting hybrid detection to generate more accurate posterior-probability thresholds 213 

for identifying individual hybrid categories by examining the accuracy with which 214 
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NEWHYBRIDS correctly identifies the hybrid class of known individuals in replicated 215 

analyses of multiple simulated datasets. Furthermore, constructing and testing multiple 216 

simulated datasets is especially important when attempting to eliminate high-grading bias 217 

through the use of simulation and training datasets (Anderson 2010), when sample sizes 218 

are small and thus gene frequencies more prone to sampling-induced alteration, and when 219 

the genetic differentiation between populations is low (Vaha & Primmer 2006). 220 

Conversely, parallelnewhybrid will also allow for larger datasets, both numbers of 221 

individuals and numbers of loci per individual, to be tested than are currently feasible, 222 

which may increase the ability for identification of hybridization at fine-scale levels of 223 

genetic differentiation. 224 
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Table 1. Comparison of the computational times required to complete the analysis of 310 

the nine files (three simulated datasets, each run in triplicate) using NEWHYBRIDS in 311 

series compared to in parallel using parallelnewhybrid using different operating systems 312 

and CPU architectures.   313 

Computer Time to 

complete in 

series (min) 

Time to 

complete in 

parallel (min) 

Fold 

improvement 

MacBook Pro 41.60 
1 10.13 4.10 

Samsung Windows 10 72.50 
2 22.47 3.21 

Dell Precision Tower Ubuntu 73.36 
3 9.93 7.62 

1MacBook Pro, OS X 10.11, 2.3 GHz Intel Core i7 with 16 GB RAM 314 

2Samsung, Windows 10, 2.3 GHz Intel Core i7 with 12 GB RAM 315 

3Dell Precision Tower 7190, Ubuntu Version 14.04, 2X 2.3 GHz Intel Xeon with 32 GB 316 

RAM317 
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Table 2 Computational time required to analyze 8 simulated datasets each with 1200 individuals genotyped at 240 loci. The analysis was repeated 318 

using different operating system and CPU architectures. CPU cores refers to the number of cores that the analysis could access 319 

simultaneously (i.e. number of parallel executions of NEWHYBRIDS). Fold improvement is calculated relative to the time taken to 320 

conduct the analysis using a single core, which itself is analogous to running the analysis in series. 321 

 MacBook Pro Samsung Windows 10
1
 Dell Precision Tower Ubuntu

2
 

3
 

CPU Cores Elapsed 

Time (min) 

Fold 

Improvement 

Elapsed Time 

(min) 

Fold 

Improvement 

Elapsed Time 

(min) 

Fold 

Improvement 

1 41.61 NA 72.20 NA 73.31 NA 

2 20.56 2.02 36.84 1.96 38.12 2.00 

3 15.39 2.72 32.32 2.23 30.91 2.47 

4 11.90 3.50 30.65 2.35 19.03 4.02 

5 12.49 3.33 32.22 2.24 19.30 3.95 

6 12.87 3.23 28.56 2.52 18.82 4.05 

7 13.75 3.03 29.72 2.43 18.43 4.14 

8 10.13 4.10 22.47 3.21 9.95 7.67 

1MacBook Pro, OS X 10.11, 2.3 GHz Intel Core i7 with 16 GB RAM 322 

2Samsung, Windows 10, 2.3 GHz Intel Core i7 with 12 GB RAM 323 

3Dell Precision Tower 7190, Ubuntu Version 14.04, 2X 2.3 GHz Intel Xeon with 32 GB RAM 324 
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